

Monitoring the hidden: TimeMap

Claudio Allocchio (GARR) And GN5-1 WP6 T3 team TimeMap-dev@lists.geant.org

Outline

- Why Timemap
- Current status
- Beyond observation: anomaly detection
- Further development

What are we talking about?

How is the road ahead today?

And how is it is in average?

"Road report: on HWY 101 there are 364 vehicles per minute"

it may Be nice

. . .

"Road report: on HWY 101 there are 364 vehicles per minute"

Or... Lots of Stop & Go

"Road report: on HWY 101 there are queues at the red spots"

...but we also like to know transit times

Network Traffic: what do we usually have?

But this is OK for bulk data transfers

NOT for real time applications which are sensitive to Latency & Jitter!

Can my application set the cruise control on and live happily?

Applications which need "cruise control" on are on fast rise!

• LoLa

+ 30%

We need to monitor "the hidden":

- latency
- jitter

www.geant.org

We need to keep track of "the hidden": TimeMap

historic series

We need to find anomalies in "the hidden"

- machine learning
- alarms
- call the Police! ... well, call the NOC people!

So in GN4-3, WP6 T1 we designed TimeMap!

Architecture requirements

- Scalable and portable system
- Network architecture neutral
- Based on monitoring standard specifications
- Based on Open Source components
- Modular containerized system
- Easy to deploy
- With federated access control

TIMEMAP architecture and features

- Latency & Jitter data collection
 - TWAMP from all backbone routers
 - TWAMP from selected PerfSonar installations
 - RPM from all backbone routers (EoL 2022)
- Simplicity: almost zero footprint
 - Docker + Linux packages
 - Minimal custom code
 - Dynamic weather map GUI
- Security
 - eduGAIN authentication
 - Role Based Access Control
 - multi-tenancy

5B73

R23

681

TIMEMAP v1 architecture – 1+ year of data taking

Flexibility: from prototype to production modules:

B23

68

An "offline" view of the service (before we try go live!)

The entry map page: click on link

GÉAN

The entry map page: click on router

www.geant.org

GEA

Periodic events

www.geant.org

GÉAN

Re-routing

rt2.tal.ee.geant.net ~

Source

Trends (clocks shifting?)

Anomaly Detection (AD) in Timemap

One more plot

Equal Cost Multipath Protocol (ECMP) effects

«non-identified event»

1 ms

Ingress / Egress

Ingress / Egress Deviations

-

1 ms

«non-identified event»

«non-identified event»

The research: Anomaly Detection (AD) in Timemap requirements

- Move beyond the simple observation
 - AD for Analytics and Alerting
 - Co-occurring events correlation
- Requirements on AD machine learning
 - Real-time or micro-batch learning/inference
 - Robust estimation
 - Light footprint

Anomaly Detection in Timemap – toolset

- Anomaly Detection, in short
 - Std.Dev classification
 - Unsupervised
 - Sensible to overfit

 Streaming ML in Python <u>https://riverml.xyz</u>

GEA

Anomaly Detection in Timemap – architecture

Almost the same look and feel

More about TimeMap

• The service on GEANT backbone

https://timemap.geant.org/

• Documentation: source code, user and admin guides, customization

https://gitlab.geant.org/gn4-3-wp6-t1-lola/timemap_public

https://timemap.geant.org

Current Status

- TimeMap is a new service in production for GÉANT
- Next steps
 - More deployments @NRENs
 - Timemap @ GARR
 - DelC is deploying TimeMap
 - Sikt is assessing TimeMap
 - Anomaly Detection
 - Up and running, Streaming ML, multi-model over network topology
 - About 200 lines of code in a Docker image
 - New feature-rich algorithms in development
 - New usage
 - Inter-Domain
 - Measure not only 1 segment (a path or a part of path)
 - Improve anomaly detection for BGP rerouting, clock drifting, ...
 - Characterize the behavior model for a link thanks to AI (ambitious)

Just to repeat ...

• The service on GEANT backbone

https://timemap.geant.org/

• Documentation: source code, user and admin guides, customization

https://gitlab.geant.org/gn4-3-wp6-t1-lola/timemap_public

Thank you! Do you have any questions?

Claudio.Allocchio@garr.it TimeMap-dev@lists.geant.org

www.geant.org

GEAN I ASSOCIATION part of the GEANT 2020 Framework Partnership Agreement PA), the project receives funding from the European Union's vrizon 2020 research and innovation programme under Grant reement No. 856726 (GN-3).